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Abstract: In safety, environmental, and financial regulation the public are often asked to accept estimates of 

a concept, “risk”, that they cannot directly perceive. Faith in these estimates is supported by logical 

reasoning but not by empirical evidence. Unfortunately, the evidence that does exist about risk phenomena 

indicates that human reasoning about risk is highly unreliable.   

 

In this paper we determine what properties must hold for Quantitative/Probabilistic Risk Assessment (QRA) 

to be fit for purpose. We identify these properties by considering how the outputs of QRA are actually used 

by engineers and regulators. We then consider what evidence could be realistically available to demonstrate 

these properties – i.e., to what extent can a particular QRA technique be validated against the properties? We 

discuss whether it is possible to directly test the properties, or at least to test the arguments made for and 

against the properties. Against this range of possible evidence, we determine what evidence does in fact exist.  

We find that whilst it is possible to test whether QRA has the properties expected of it, good evidence is not 

currently available. 

 

This conclusion should not necessarily be interpreted as evidence against the safety of industries using QRA, 

but does cast into doubt the extent to which QRA contributes to the achievement of safety. It also suggests 

that if there are benefits to QRA, there is no evidenced reason to believe that they arise from quantification 

rather than from the process of systematically analysing the sources of risk. 
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1 Introduction 
 

1.1 Problem Statement 

 

Engineering is “the application of scientific and mathematical principles to practical ends.”[1] Risk 

Management has a well understood set of practical ends, and a well-populated set of principles and practices 

for achieving those ends. In this paper we examine the fitness for purpose of the principles and practices 

related to assigning a numerical quantity to risk. Safety regulation will be used as a running example, but the 

work is applicable to risk regulation more generally. 

 

The underlying principles of risk assessment are captured in the National Academy of Science “Red Book” 

[2]. The Red Book models regulatory action as two conceptually distinct activities – assessing risk, and 

making decisions based on that risk. It treats assessment of risk as an essentially scientific activity, limited by 

the available scientific knowledge and uncertainty surrounding the risk. It treats decision making in response 

to the risk as a political activity, with risk assessment as one input.  

 

The Red Book implicitly represents risk as a quantity attached to a particular outcome or set of outcomes. 

The risk of any particular negative outcome is determined by considering both the severity and the likelihood 

of the outcome. Risk as a numerical quantity is useful for: 

 Making appropriate decisions about risk mitigation measures based on their cost and the extent to 

which they are likely to reduce risk [3] 

 Making trade-off decisions between different sources of risk, such as choosing between energy 

sources or design options [4] 

 Regulating and accepting the risk associated with a particular project [5] 

 Transferring risk through insurance or compensation [6] 

 



The term “risk assessment” is used widely in both literature and industry, and covers a range of meanings. In 

its narrowest sense, a quantitative risk assessment involves determination of the likelihood of a particular 

event sequence for a given scenario. An example risk assessment of this type is given by Rochelle [7], who 

calculates the probability of at least one individual being fatally struck by a piece of the Upper Atmosphere 

Research Satellite (UARS) after it re-enters the atmosphere from orbit. A wider form of risk assessment 

considers the likelihood of a particular event in all scenarios. An example risk assessment of this type is 

contained in the “WASH-1400” Nuclear Reactor Safety study [8], which calculates the likelihood of release 

events of specific types and magnitudes.  Broader still are risk assessments which determine the total 

likelihood of particular consequences arising from a particular decision, such as the Environmental 

Protection Agency (EPA) determining the risk of fatality if the use of organophosphates is permitted [9]. The 

widest type of risk assessment attempts to determine the total risk presented by a system or decision (in 

principle aggregating all possible consequences. Safety regulations for the introduction of equipment in high-

risk industries such as railways [10] or aircraft [11] typically require such assessments.  

 

Each increase in the scope of risk assessment adds a layer of uncertainty. This can be readily seen in the case 

of a deterministic system such as a computer program (considered in the abstract, without reference to 

hardware). For a particular scenario (a given input sequence), the chance of a particular output can be 

precisely calculated – in fact, it is either certain or impossible. Determining the overall probability of a 

particular output requires characterization of the input profile, as well as knowledge of the outputs for each 

input. Determining the probability of outputs causing a particular consequence adds the requirement to 

determine which outputs have that consequence. Determining total risk requires additionally knowing all of 

the real world consequences the software could contribute to.  

 

Quantitative Risk Assessment (QRA) and Probabilistic Risk Assessment (PRA) - hereafter referred to jointly 

as QRA – are applied at all levels of risk assessment. QRA is widely used, and both explicitly and implicitly 

required by many standards and regulations. Despite a wide body of research on improving and applying 

QRA, very little information exists on the validity of the techniques. Without validation, there is limited 

potential to improve the state of the art or the state of practice, and good reason to view the results provided 

by QRA with skepticism.  In other words, QRA is used to assure the integrity of systems, but QRA has not 

itself undergone the necessary assurance. 

 

2 Necessary properties of QRA 

 
2.1 Source of Required Properties 

 

There is no academic or industrial source which spells out the properties that QRA must have. However, we 

can infer the required properties by looking at how QRA is used and what people say about QRA. We state 

these properties here as claims which can be made about QRA, and which can in theory be supported or 

refuted by evidence.  

 

PRIMARY CLAIM: That the “top number” – the aggregated measure of total system risk – is sufficiently 

accurate and precise.  

 

SECONDARY CLAIM: That the process of conducting QRA provides measurable safety benefit compared 

to equivalent non-quantified risk assessment activities. 

 

FALLBACK CLAIM: That QRA is one of a range of activities that provides measurable safety benefit, but 

cannot be shown to be better or worse than other activities which cause time to be spent thinking about how 

to make a system safer.  

 

To check that these claims were a fair representation of the way QRA is used and discussed, we surveyed a 

collection of real-world risk assessment reports [12] and noted the self-identified purpose of the reports. 
Activities making use of QRA include: 

 Classifying risk (usually for the purpose of regulating a substance or technology) 
 Reacting to public concern regarding a known or suggested risk 
 Identifying ways to improve a design  

 Selecting between competing designs 



 Comparison of risk with pre-defined benchmarks 

 Trading-off risk against other concerns 

 Operational risk management 

 Accepting or declining risk as a public policy decision 

 

 

2.2 How Precise and Accurate Does the Top Number Need to Be? 

 

The WASH-1400 report [8] and its successor NUREG 1150 [13] formed the basis of nuclear regulation in 

the United States over the past decades [5]. WASH-1400 assigned frequencies to various radiation release 

events ranging from 9 x 10
-7 

to 1 x 10
-4 

per reactor per year. Uncertainty ranges for these figures were not 

provided, but there is an implicit claim in stating the 9 x 10
-7

 figure that the probabilistic methods used were 

capable of distinguishing between 8 x 10
-7

 and 1 x 10
-6

 releases per reactor per year. WASH-1400 is widely 

argued (see for example Leveson and Rahn [14]) to make pessimistic estimates. If future estimates are to be 

less pessimistic, they will also need to be more accurate.  

 

It is not just probabilities that need to be accurate. Environmental risk quantification began and continues to 

be dominated by the adverse health consequences of exposure to toxic or pathogenic agents. Typically this 

involves a single chemical with specified health endpoints. For example, the European Union risk 

assessment of “4-Nonylphenol (branched) and Nonylphenol” [15] compares expected population doses to the 

LD50 (the dose with a 50% likelihood of causing death in an individual).  The methods used need to identify 

the population doses with sufficient accuracy to judge whether the maximum expected dose approaches the 

LD50. 

 

In the case of QRA used to determine regulatory compliance, the total error must be less than the margin 

between the estimated risk and the risk limit. For example, if an aircraft system must exhibit a dangerous 

fault less than 1 x 10
-6

 per flight hour, and is estimated to exhibit such faults at a rate of 8 x 10
-7

 per flight 

hour, then the error must be less than 2 x 10
-7

 per flight hour. Otherwise the QRA could appear to show that 

an unsatisfactory system met the target.  

 

2.3 Can We Tell if QRA has been Properly Conducted? 

 

Where QRA is used for making decisions, there must be some way to tell that it has been properly 

performed. The U.S. Nuclear Regulatory Commission has published guidance on determining whether any 

particular QRA is technically adequate [16]. This guidance relies on the adequacy of “good industry 

practice” and the ability of review staff to identify omissions or inappropriate treatment of uncertainty.  

Such judgment is difficult, however, because risk assessment is prone to subtle error. The textbook 

“Misconceptions of Risk” by Terje Aven [17] details nineteen fundamental misunderstandings capable of 

undermining an assessment. Assuming that Aven is not attacking straw-men (the authors of this paper have 

personally witnessed many of these misunderstandings in industrial practice, as has Hansson [18]) this places 

a significant burden on review processes.  

 

2.4 Can QRA Results Survive Communication?  

 

Alexander and Kelly [19] highlight the importance of probabilities and other numbers in communicating 

risk. Expressing risks numerically is necessary for prioritization, proportional response and aggregation of 

risk. Whilst Alexander and Kelly argue predominately in favor of QRA, they note that where stakeholders 

are likely to misinterpret or misuse quantitative estimates, provision of such estimates can be dangerous. 

Adapting the approach of Watson [20], they suggest that the usable product of QRA is an expressed 

relationship (an “argument”) between input and output estimates. The audience of QRA is expected to 

review, challenge and/or use the argument to manage safety, rather than merely accept the output estimates.  

 

Whilst this approach is internally consistent, and overcomes many of the epistemological problems with risk 

estimates and QRA methods, it introduces the requirement that those who conduct QRA communicate the 

outputs in this fashion, and that those who receive QRA outputs are able to interpret them appropriately.  

 



This expectation is subtle, and not necessarily practicable. A risk practitioner might say “the risk of an 

accident is 1 x 10
-8

 per year if the estimated failure rates hold and the model is correct”, meaning that 

significant work is required to monitor the failure rates and validate the model. Their audience might simply 

hear “the risk of an accident is 1 x 10
-8

 per year”.  

 

2.5 Does QRA Lead to Safer Systems Even When the Top Number is Not Accurate? 

  

In 2004, Apostolakis presented an enthusiastic defense of QRA in response to popular press skepticism [21]. 
Notably, he chose specifically not to defend the quantification of aggregate risk, instead pointing to the 

improvements in safety that may arise from performing the analysis. This is not to say that safety 

improvement is a side-effect of quantification – Apostolakis suggests that a focus on quantification was 

necessary: 

 to appropriately prioritise risk from different scenarios; 

 to facilitate communication between stakeholders; 

 to integrate information from different academic disciplines; 

 to highlight areas of uncertainty where more information or research is necessary. 

 

Apostolakis also argues for the central role of quality review in achieving these goals. The argument made 

by Apostolakis is similar to that of Alexander and Kelly [19]. Whilst Alexander and Kelly focus on 

communication of a faithful mental model of the risk of a complete system, Apostolakis concentrates on 

identifying opportunities for design improvement or further assurance. 

 

3 Direct Evidence for and against QRA Fitness-for-Purpose 
The authors have carried out an organized search for literature empirically addressing whether PRA 

techniques have the required properties. This search was conducted in two stages. First, an automated search 

paired keywords representing QRA or specific QRA techniques, with keywords relating to the properties in 

Section 2 or to evidence gathering and evaluation. Second, a manual search was conducted using queries on 

mailing lists and tracing references from papers that advocated QRA or specific QRA techniques.  

 

As suggested by our previous work on system safety research validation [22], there is a very low volume of 

research providing direct evidence either for or against QRA satisfying the fitness-for-purpose requirements. 

In fact, the only work directly on topic discusses the lack of evidence rather than providing evidence in either 

direction. Manion [23] discusses the evidence basis for Fault Tree Analysis (FTA), but the only direct 

statement about FTA performance, that fault trees underestimate risk “often by many orders of magnitude” is 

in fact a hypothetical assertion from Mauri [24] rather than an evidenced claim. Danielsson [25] discusses 

quantitative models for financial risk assessment, demonstrating that the paucity of evidence for QRA is not 

confined to system safety. 

 

The lack of evidence supporting QRA is not due to fundamental difficulties with evaluating QRA 

performance. Whilst it remains challenging to conduct a controlled experiment to verify whether predicted 

risk reliably matches actual system risk, there are many relevant questions that can be addressed through 

experimental or field research.  

 

A sample of questions which could be answered through controlled experiment are: 

 How good are typical reviewers at spotting known errors within real QRA? 

 To what extent is the result of QRA for a given system variable according to the particular 

practitioner or organisation who performs the analysis? 

 To what extent do external influences such as a known risk target influence the conduct and outcome 

of QRA for a given system? 

 To what extent can reviewers identify which QRA is more correct when two QRAs are performed 

for the same analysis? (Or, failing that, to what extent can reviewers agree which QRA is more 

correct?) 

 Does the representation of QRA influence the understanding of a reviewer or customer? 

 Do the quantification steps in QRA improve understanding of risk over and above the non-

quantification steps? 

 



A sample of questions which could be answered through field observation are: 

 How often do known types of errors occur within real QRA? 

 How often does design-time QRA omit or understate hazards which later cause accidents? 

 To what extent is QRA used as an in-service risk model? 

 

4 Indirect Evidence for Foundations and Criticism of QRA 

 

Objections to the use of QRA fall into three broad camps: 
1. Disagreement that it is possible (or even necessarily desirable) to separate the risk assessment and 

decision making processes [26]; 

2. technical concerns about the accuracy and precision of the risk assessment [23]; and 

3. concerns about the communication and use of risk assessment results, particularly with respect to 

uncertainty in the results [27]. 
 

These concerns may be addressed by turning them into questions which can be resolved through empirical 

enquiry.  

 

4.1 Can risk assessment be practically separated from risk decision making? 

 

The separation of “scientific” risk assessment from “political” risk decision making, as advocated by the US 

National Science Council [2] relies on the ability to procedurally and intellectually separate the two 

activities. Whilst there is strong evidence that the separation is not maintained in practice (see for example 

[12] and [26]) this does not directly show that separation is not practicable. Of greater concern is the large 

body of work relating to the unreliability of human judgment. Of particular concern are framing effects and 

external signal effects. 

 

Framing effects relate to distortions in subjective judgment caused by the manner in which the problem is 

presented. Specific examples observed in risk models are pruning bias and partition dependence. Pruning 

bias, first described by Fischoff in the context of fault trees [28], causes collected risks to be estimated lower 

than the same risks considered individually. In the more general case of partition dependence [29], study 

participants tend to treat all risks as equal unless they have specific information. For example, if asked to 

compare risk A with risk B, they will tend to evaluate the risks as equal. However, if risk B is instead 

presented as four separate risks (C, D, E, and F), they will treat A, C, D, E and F as equal, effectively rating 

risk B as four times more significant than risk A.  

 

An external signal effect is where a decision maker receives a suggestion as to the “right answer” from some 

source outside the immediate problem. A typical example is when the expected answer to a survey question 

is suggested by other questions in the same survey [30].  External signals have a practical impact on decision 

making when regulatory procedures and targets influence expert judgment [31]. If a particular likelihood or 

severity associated with an adverse event would cause that event to be classified as “unacceptable risk”, this 

is fact should not in theory change the estimate of likelihood or severity, but in practice will do so. 

 

4.2 Can causal models sufficiently represent the pathways to accidents?  

 

There is a distinction between what can go wrong with causal models (causing the model to inaccurately 

represent the possible paths to accidents), what has gone wrong in the past, and what will inevitably go 

wrong. We have found no source that disputes the many possible errors in QRA – writers who support QRA 

implicitly or explicitly judge that these errors can be avoided. In the following analysis we consider cases 

where there is academic concern about a particular type of error (something that can go wrong) and practical 

evidence that it can occur in real analysis (it has gone wrong). We consider that in these cases there is a 

burden of proof requiring evidence that the error can be systematically avoided – in other words, the null 

hypothesis is the potential for error is sufficient to invalidate QRA.  

 

Problem 1: Incomplete identification of the range of dangerous outcomes 

Hazard identification is not a deterministic activity, and there is no possible test for completeness of any 

hazard list. Industry specific methods of “automated hazard identification” (see Catino [32] as a 

representative example of a large body of work) rely on matching system behaviors against previously-



identified hazards. Measuring performance of hazard identification as a research exercise is complicated by 

instances of the same hazard represented in different ways, and the lack of a reference list against which to 

compare identified hazards. Proving a hazard list to be incomplete is much easier, requiring only examples of 

hazards which are real but have not been identified. Carter and Smith [33] have performed this exercise for 

construction industry hazard lists, and Suokas and Pyy [34] conducted a similar investigation of chemical 

process plants. Both studies found significant gaps between the list of hazards which the authors believed 

should reasonably have been identified, and the actual lists of hazards. Suokas and Pyy drew the further 

conclusion that hazard identification was strongest in the case of physical failures, and weakest in the case of 

management and design problems.  

 

Problem 2: Invalid Assumptions of Independence 

 

Performing QRA calculations requires either statistically independent basic events (e.g. Fault Tree Analysis) 

or known conditional probabilities (e.g. Bayesian Belief Networks). If the technique assumes independence 

but this assumption is not true, top event probabilities are not valid. Violations of independence can be 

viewed more intuitively as “common-cause failures” (CCFs) – a single unidentified basic event which 

couples two identified events. 

 

Beer [35] reviewed 609 aircraft accident and incident reports and found that common-cause failures were 

present in 11% of the reports. The 11% included only cases where Beer could positively confirm the 

existence of CCF. Unfortunately accident reports seldom refer back to the original risk assessment, so this 

does not demonstrate that the original QRA omitted the CCF. However, the fact that an accident occurred is 

strong circumstantial evidence that the CCF escaped appropriate treatment.  

 

Problem 3: Unanticipated System Behavior 

 

Joyce and Wong [36] describe the problem of system behaviors which are “not non-conformant” – i.e., they 

do not strictly contradict any identified requirement, but are still undesirable. They argue that unsafe, not 

non-conformant behaviors can occur in the presence of structured safety programs, and therefore that testing 

against safety requirements is insufficient for safety assurance.  

 

Leveson [37] describes the Arianne 501 launch failure, the loss of the Mars Polar Lander and a UK chemical 

plant accident as industrial instances where all individual components behaved exactly as specified, leading 

to a dangerous system state.  

 

A specific cause of unanticipated system behavior is where a system behaves “as-designed” but in an 

unanticipated environment. The Fukushim loss of cooling accident [38] is an example of credible 

environmental circumstances beyond the design-basis used for QRA which never-the-less led to an accident. 

 

Problem 4: Omission of a Category of Concerns 

 

Anecdotally there is a high incidence of QRA omitting entire categories of concerns such as software, human 

error, maintenance effects or environmental factors. In such cases the QRA may accurately represent the 

likelihood of accidents from some causes, but inaccurately communicate it as the likelihood from all causes.  

 

Every accident or incident involving a system previously thought to be safe provides circumstantial evidence 

that the underlying failure model was incomplete, although it is not always possible to differentiate between 

technical and managerial error in this regard. In as yet unpublished work, Reinhardt [39] describes two Royal 

Air Force investigations into unreliable systems which found failure modes not considered in the original 

quantitative analysis.  

 

4.3 Can inputs to QRA be accurately quantified? 

 

Skeptical critiques of quantitative risk assessment (see Manion [23], Hansson [18], Apostolakis [21], Peter 

[27]) emphasize the poor pedigree of the source data. In the above discussion we hope to make clear that 

source data uncertainty is only one of several challenges to the utility of QRA. However, this does not take 

away from the legitimate concerns about “Garbage In, Garbage Out”. Unless divergent data sources are used 



to triangulate probabilities (a rare practice in QRA) combination of uncertain sources can only increase, 

rather than decrease, the associated uncertainty.  The common use of single-point data instead of more 

appropriate probability distributions compounds the use of poor source data.  

 

Specific concerns include: 

 Incorrect anticipation of the range or frequency of human error [40] 

 Incorrect modeling of complex processes such as evacuation, fire, flooding or structural movement 

[41] 

 Unreliable expert judgment [29][42]  
 Insufficient historical data [43] 

 Over-optimistic assessment of mitigations [44] 

 

The Lewis Committee Report [45] produced in response to criticism of WASH-1400 raised concern not only 

that the uncertainty of the WASH-1400 conclusions was unstated, but that it was unknown. Lewis did not 

reject the use of probabilistic risk assessment, although one of the authors of the report questioned whether 

the methods could ever provide estimates with sufficient confidence. Of particular concern to the Lewis 

Committee was inability to properly quantify human error or common cause failures. 

 

4.4 Do QRA results maintain validity beyond system deployment? 

 

QRA is a “snapshot” of system risk at a particular time. If the system risk varies significantly over time, 

QRA can be very misleading about the actual risk of a system. Factors which threaten the validity of QRA as 

a system is used are detailed in Rae and Nicholson [43]. Of particular concern are: 

 

 Divergence between the modeled system and the as-built system; 

 Interactions between social and technical parts of the system which invalidate technical assumptions 

[46]; and  
 Changes in effectiveness of mitigations over time. 

 

5 Conclusion 

 
5.1 What can be reasonably concluded from the evidence? 

 

In this paper we have shown that there are a set of properties which QRA must have to be fit-for-purpose. In 

establishing these properties we have taken into account the multiple purposes that QRA has, with the 

understanding that it may be fit for some purposes but not for others. These properties must hold for QRA as 

it is actually practiced. It is insufficient for QRA to be merely capable of being fit for purpose, it must 

actually be so. 

 

Our contention that empirical evidence is necessary to establish the properties of QRA is based on two lines 

of argument: 

 There is no extant evidence that QRA has the required properties, despite opportunity for such 

evidence to be produced 

 There is a body of evidence to support the existence of multiple problems with QRA, placing a 

positive burden of proof on proponents and users of QRA to show that these problems can and have 

been dealt with 

 

In the absence of systematic evidence for or against QRA efficacy, we can classify QRA properties as 

follows: 

 

With respect to: 

 

PRIMARY CLAIM: That the “top number” – the aggregated measure of total system risk – is sufficiently 

accurate and precise.  

 



This claim is not evidenced and is implausible in the general case of total risk. It is plausible that it may be 

true for specific outcomes arising through specific mechanisms, as many of the challenges to QRA do not 

apply in these cases.  

 

With respect to: 

 

SECONDARY CLAIM: That the process of conducting QRA provides measurable safety benefit compared to 

equivalent non-quantified risk assessment activities. 

 

This claim is poorly evidenced, but plausible mechanisms are proposed by Aven [17] and Apostolakis [21]. 

 

With respect to: 

FALLBACK CLAIM: That QRA is one of a range of activities that provides measurable safety benefit, but 

cannot be shown to be better or worse than other activities which cause time to be spent thinking about how 

to make a system safer.  

 

This claim lacks systematic evidence, but is highly plausible and is not challenged by any of the indirect 

evidence against QRA efficacy. In the absence of systematic evidence, the accumulated anecdotal experience 

of safety practitioners lends weight to the claim.  

 

These conclusions concern the evidence for QRA, which is itself used as an evidence-generating activity. 

The fact that QRA lacks evidence does not mean that outcomes of QRA are incorrect, merely that there is 

insufficient reason to trust them. It is not evidence that the real risks are higher or lower than QRA estimates, 

but it is reason to be concerned about the accuracy of those estimates. 

 

5.2 Where to from here? 

 

Particular decisions made with the assistance of QRA are 2nd order removed from the evidence deficit. 

Problems with QRA are not problems with the industries which tend to use QRA. An industry which tries 

hard to improve safety using an imperfect method may still be safer than one which doesn’t try as hard, 

simply by virtue of the attention paid to safety, and the consequential design improvements. For industries 

such as aviation and nuclear power, there is direct evidence from accident rates to shows those industries in 

good light independently of their use of QRA. 

 

Our concern is that the low accident rates in these industries may be independent of, or only indirectly linked 

to, the use of QRA. This is important for other industries attempting to emulate the success of nuclear power 

or aviation. Promotion of system safety in these other industries should focus on those practices which are 

most likely to add real value, and for industries such as health care may require strong empirical evidence to 

gain traction.  

 

Knowledge about the efficacy of QRA is important also for efficient allocation of effort. With trained and 

experienced safety practitioners in high demand, their time may be better spent on activities other than QRA. 

The most obvious alternative is spending time qualitatively understanding the hazardous behaviors of the 

system.  

 

Our investigation supports the following actions: 

 

Firstly, it is evident that numerical claims supported by QRA must be moderated. In particular, when QRA 

users communicate the results of QRA, they need to more strongly express the uncertainty inherent in the 

methods themselves, not just the uncertainty propagated from the inputs to the outputs.  

 

Secondly, there is a need for research to fill the evidence gaps associated with QRA. It is likely that positive 

direct evidence of QRA inaccuracy will be necessary to halt current misuse of QRA. Additionally, the 

hypothesis that QRA has intrinsic benefits independent from the numerical outputs should be tested in both 

controlled experiments and practical settings.  

 



Finally, the QRA community needs to make sure that industries undergoing safety reform, such as deep-sea 

oil and gas extraction, learn the right lessons from successful industries. This will require rigorous evaluation 

of QRA practices against their explicitly claimed benefits.  
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